Skip to main content

Contoh Soal Persamaan Lingkaran, Jari-Jari, dan Titik Pusat Lingkaran

Pembelajaran matematika kali ini adalah tentang lingkaran, dimana kita akan membahas contoh soal persamaan lingkaran, jari-jari dan juga titik pusat lingkaran.

Dalam kehidupan sehari-hari sangat sering kita jumpai benda-benda yang berbentuk lingkaran, seperti : ban sepeda, jam dinding dan lain-lain.

Lalu tahukah kamu, bagaimana menetukan persamaan benda yang berbentuk lingkaran tersebut. Nah, sebelum kita memasuki latihan soalnya, ada baiknya kita memahami terlebih dahulu rumus untuk mencari persamaan lingkaran. Lalu dari persamaan lingkaran tersebut kita dapat mendapatkan juga titik pusat lingkaran beserta jari-jarinya.

1. Rumus persamaan lingkaran dengan titik pusat (0,0)

Jika kita memiliki lingkaran yang memiliki titik pusat (0, 0) dan memiliki jari-jari r digambarkan di bawah ini
Untuk persamaan lingkaran seperti gambar di atas, kita dapatkan :
x2 + y2 = r2

2. Rumus persamaan lingkaran dengan titik pusat (a,b)


Berikut ini adalah lingkaran yang memiliki titik pusat (a, b) serta memiliki jari-jari r seperti gambar di bawah ini :
Jadi persamaan lingkaran yang memiliki titik pusat (a,b) adalah :
(x - a)2 + (y - b)2 = r2

Bentuk persamaan lingkaran di atas dapat kita jabarkan :
⇔ (x - a)2 + (y - b)2 = r2
⇔ x2 – 2ax + a2 + y2 – 2bx + b2 = r2
⇔ x2 + y2– 2ax – 2bx + a2 + b2 - r2 = 0

Bentuk persamaan lingkaran dari :
x2 + y2– 2ax – 2bx + a2 + b2 - r2 = 0

dapat ditulis menjadi :
x2 + y2 + Ax + Bx + C = 0

dimana:
A = −2a
B = −2b
C = a2 + b2 − r2

Dengan demikian, apabila terdapat persaman lingkaran dengan bentuk :
x2 + y2 + Ax + Bx + C = 0

Maka, cara menentukan pusat dan jari-jari lingkaran:
P = (-
1 / 2
A, -
1 / 2
B)
r = (-
1 / 2
A)2 + (-
1 / 2
B)2 - C

Keterangan :
  • P adalah titik pusat lingkaran
  • r adalah jari-jari lingkaran
  • A = −2a
  • B = −2b
  • C = a2 + b2 − r2


Contoh Soal Persamaan Lingkaran


Soal No.1
Sebuah lingkaran yang memiliki titik pusat P(0,0) dengan jari-jari 6, maka persamaan lingkaran tersebut adalah ....
A. x2 + y2 = 36
B. x2 + y2 = 6
C. (x - 6)2 + (y - 6)2 = 36
D. x2 + y2 - 36 = 36

Pembahasan
Untuk persamaan lingkaran yang memiliki titik pusat (0,0), maka digunakan rumus :
⇔ x2 + y2 = r2
⇔ x2 + y2 = 62
⇔ x2 + y2 = 36

Jawab : A


Soal No.2
Perhatikan gambar di bawah ini :
Dari gambar di atas, berapakah kordinat titik pusat serta nilai jari-jarinya ?
A. Titik Pusat (0,0) dan jari-jari adalah 10
B. Titik Pusat (0,0) dan jari-jari adalah 5
C. Titik Pusat (5,5) dan jari-jari adalah 5
D. Titik Pusat (0,0) dan jari-jari adalah 20

Pembahasan
Titik pusat lingkaran yaitu titik yang terletak di tengah-tengah lingkaran.

Jari-jari lingkaran adalah garis lurus yang menghubungkan titik pusat lingkaran ke titik pada garis lengkung lingkaran. Jari-jari juga merupakan jarak antara titik pusat terhadapa setiap titik pada garis lengkung lingkaran.

Dengan demikian,dari gambar tampak jelas :
Titik Pusat (0,0) dan jari-jari adalah 5

Jawab : B


Soal No.3
Jika kita memiliki persamaan lingkaran x2 + y2 = 144. Maka panjang diameter lingkaran tersebut adalah .....?
A. 12
B. 14
C. 24
D. 144

Pembahasan
Persamaan lingkaran : x2 + y2 = 144 merupakan bentuk persamaan dari x2 + y2 = r2
Dengan demikian, dapat kita ketahui :
r2 = 144
r = 144 = 12

Diameter = 2 x jari-jari
Diameter = 2 x 12

Jawab : C


Soal No.4
Sebuah lingkaran yang memiliki titik pusat (0,0) dan jari-jari 7 memili persamaan lingkaran.....
A. x2 + y2 = 49
B. x2 + y2 = 144
C. x2 + y2 = 7
D. x2 + y2 = 77

Pembahasan
Persamaan lingkaran yang memiliki titik pusat (0, 0) dan jari-jari r adalah :
⇔ x2 + y2 = r2
⇔ x2 + y2 = 72
⇔ x2 + y2 = 49

Jawab : A


Soal No.5
Sebuah lingkaran yang memiliki titik pusat (-4, -9) dan berjari-jari 5 memiliki persamaan lingkaran ?
A. x2 + y2 + 8x + 18y + 72 = 0
B. x2 + y2 + 18x + 18y + 72 = 0
C. x2 + y2 + 18x + 18y + 18 = 0
D. x2 + y2 + 8x + 18y + 18 = 0

Pembahasan
⇔ (x - a)2 + (y - b)2 = r2
⇔ (x – (-4))2 + (y – (-9))2 = 52
⇔ (x + 4)2 + (y + 9)2 = 52
⇔ x2 + 8x + 16 + y2 + 18y + 81 = 25
⇔ x2 + y2 + 8x + 18y + 16 + 81 – 25 = 0
⇔ x2 + y2 + 8x + 18y + 72 = 0

Jawab : A


Soal No.6
Sebuah lingkaran yang memiliki titik pusat (3, -5) dan berjari-jari 2 memiliki persamaan lingkaran ?
A. x2 + y2 - 6x + 10y + 29 = 0
B. x2 + y2 - 16x + 10y + 29 = 0
C. x2 + y2 - 6x + 16y + 29 = 0
D. x2 + y2 + 18x + 18y + 29 = 0

Pembahasan
⇔ (x - a)2 + (y - b)2 = r2
⇔ (x – 3)2 + (y – (-5))2 = 22
⇔ (x – 3)2 + (y + 5)2 = 22
⇔ x2 – 6x + 9 + y2 + 10y + 24 = 4
⇔ x2 + y2 – 6x + 10y + 9 + 24 – 4 = 0
⇔ x2 + y2 – 6x + 10y + 29 = 0


Jawab : A


Soal No.7
Jari-jari dan pusat lingkaran yang memiliki persamaan x2 + y2 + 4x − 6y − 12 = 0 adalah...
A. Titik pusat (−2, 3) dan jari-jari 5
B. Titik pusat (2, −3) dan jari-jari 5
C. Titik pusat (−3, 2) dan jari-jari 6
D. Titik pusat (3, −2) dan jari-jari 6

Pembahasan
Dari persamaan lingkaran : x2 + y2 + 4x − 6y − 12 = 0, kita dapatkan
A = 4
B = −6
C = −12

Titik Pusat lingkaran (P) adalah :
⇔ P = (-
1 / 2
A, -
1 / 2
B)
⇔ P = (-
1 / 2
(4), -
1 / 2
(-6))
⇔ P = (-2, 3)

Jari-jari lingkaran adalah :
⇔ r = (-
1 / 2
A)2 + (-
1 / 2
B)2 - C

⇔ r = (-
1 / 2
(4))2 + (-
1 / 2
(-6))2 - (-12)

⇔ r = 4 + 9 + 12 = 3

⇔ r = 25 = 5


Sehingga titik pusat (-2, 3) dan jari-jarinya adalah 5

Jawab : A
Comment Policy: Silahkan tuliskan komentar Anda yang sesuai dengan topik postingan halaman ini. Komentar yang berisi tautan tidak akan ditampilkan sebelum disetujui.
Buka Komentar
Tutup Komentar