Contoh Soal Persamaan Lingkaran, Jari-Jari, dan Titik Pusat Lingkaran
Materi persamaan lingkaran ini umumnya diajarkan atau diperkenalkan pada matematika kelas 11. Harapannya anda akan lebih memahami dan mengerjakan soal-soal persamaan lingkaran secara lebih cepat.
Dalam kehidupan sehari-hari sangat sering kita jumpai benda-benda yang berbentuk lingkaran, seperti : ban sepeda, jam dinding dan lain-lain.
Lalu tahukah kamu, bagaimana menetukan persamaan benda yang berbentuk lingkaran tersebut. Nah, sebelum kita memasuki latihan soalnya, ada baiknya kita memahami terlebih dahulu rumus untuk mencari persamaan lingkaran. Lalu dari persamaan lingkaran tersebut kita dapat mendapatkan juga titik pusat lingkaran beserta jari-jarinya.
1. Rumus persamaan lingkaran dengan titik pusat (0,0)
Jika kita memiliki lingkaran yang memiliki titik pusat (0, 0) dan memiliki jari-jari r digambarkan di bawah ini
x2 + y2 = r2
2. Rumus persamaan lingkaran dengan titik pusat (a,b)
Berikut ini adalah lingkaran yang memiliki titik pusat (a, b) serta memiliki jari-jari r seperti gambar di bawah ini :
(x - a)2 + (y - b)2 = r2
Bentuk persamaan lingkaran di atas dapat kita jabarkan :
⇔ (x - a)2 + (y - b)2 = r2
⇔ x2 – 2ax + a2 + y2 – 2bx + b2 = r2
⇔ x2 + y2– 2ax – 2bx + a2 + b2 - r2 = 0
Bentuk persamaan lingkaran dari :
dapat ditulis menjadi :
dimana:
A = −2a
B = −2b
C = a2 + b2 − r2
x2 + y2– 2ax – 2bx + a2 + b2 - r2 = 0
dapat ditulis menjadi :
x2 + y2 + Ax + Bx + C = 0
dimana:
A = −2a
B = −2b
C = a2 + b2 − r2
Dengan demikian, apabila terdapat persaman lingkaran dengan bentuk :
x2 + y2 + Ax + Bx + C = 0
Maka, cara menentukan pusat dan jari-jari lingkaran:
P = (-
Keterangan :
x2 + y2 + Ax + Bx + C = 0
Maka, cara menentukan pusat dan jari-jari lingkaran:
P = (-
1
2
A, -
1
2
B)
r = √(-
1
2
A)2 + (-
1
2
B)2 - C
Keterangan :
- P adalah titik pusat lingkaran
- r adalah jari-jari lingkaran
- A = −2a
- B = −2b
- C = a2 + b2 − r2
Contoh Soal Persamaan Lingkaran
Soal No.1
Sebuah lingkaran yang memiliki titik pusat P(0,0) dengan jari-jari 6, maka persamaan lingkaran tersebut adalah ....
A. x2 + y2 = 36
B. x2 + y2 = 6
C. (x - 6)2 + (y - 6)2 = 36
D. x2 + y2 - 36 = 36
Pembahasan
Untuk persamaan lingkaran yang memiliki titik pusat (0,0), maka digunakan rumus :
⇔ x2 + y2 = r2
⇔ x2 + y2 = 62
⇔ x2 + y2 = 36
Jawab : A
⇔ x2 + y2 = r2
⇔ x2 + y2 = 62
⇔ x2 + y2 = 36
Jawab : A
Soal No.2
Perhatikan gambar di bawah ini :
A. Titik Pusat (0,0) dan jari-jari adalah 10
B. Titik Pusat (0,0) dan jari-jari adalah 5
C. Titik Pusat (5,5) dan jari-jari adalah 5
D. Titik Pusat (0,0) dan jari-jari adalah 20
Pembahasan
Titik pusat lingkaran yaitu titik yang terletak di tengah-tengah lingkaran.
Jari-jari lingkaran adalah garis lurus yang menghubungkan titik pusat lingkaran ke titik pada garis lengkung lingkaran. Jari-jari juga merupakan jarak antara titik pusat terhadapa setiap titik pada garis lengkung lingkaran.
Dengan demikian,dari gambar tampak jelas :
Titik Pusat (0,0) dan jari-jari adalah 5
Jawab : B
Jari-jari lingkaran adalah garis lurus yang menghubungkan titik pusat lingkaran ke titik pada garis lengkung lingkaran. Jari-jari juga merupakan jarak antara titik pusat terhadapa setiap titik pada garis lengkung lingkaran.
Dengan demikian,dari gambar tampak jelas :
Titik Pusat (0,0) dan jari-jari adalah 5
Jawab : B
Soal No.3
Jika kita memiliki persamaan lingkaran x2 + y2 = 144. Maka panjang diameter lingkaran tersebut adalah .....?
A. 12
B. 14
C. 24
D. 144
Pembahasan
Persamaan lingkaran : x2 + y2 = 144 merupakan bentuk persamaan dari x2 + y2 = r2
Dengan demikian, dapat kita ketahui :
r2 = 144
Diameter = 2 x jari-jari
Diameter = 2 x 12
Jawab : C
Dengan demikian, dapat kita ketahui :
r2 = 144
r = √144 = 12
Diameter = 2 x jari-jari
Diameter = 2 x 12
Jawab : C
Soal No.4
Sebuah lingkaran yang memiliki titik pusat (0,0) dan jari-jari 7 memili persamaan lingkaran.....
A. x2 + y2 = 49
B. x2 + y2 = 144
C. x2 + y2 = 7
D. x2 + y2 = 77
Pembahasan
Persamaan lingkaran yang memiliki titik pusat (0, 0) dan jari-jari r adalah :
⇔ x2 + y2 = r2
⇔ x2 + y2 = 72
⇔ x2 + y2 = 49
Jawab : A
⇔ x2 + y2 = r2
⇔ x2 + y2 = 72
⇔ x2 + y2 = 49
Jawab : A
Soal No.5
Sebuah lingkaran yang memiliki titik pusat (-4, -9) dan berjari-jari 5 memiliki persamaan lingkaran ?
A. x2 + y2 + 8x + 18y + 72 = 0
B. x2 + y2 + 18x + 18y + 72 = 0
C. x2 + y2 + 18x + 18y + 18 = 0
D. x2 + y2 + 8x + 18y + 18 = 0
Pembahasan
⇔ (x - a)2 + (y - b)2 = r2
⇔ (x – (-4))2 + (y – (-9))2 = 52
⇔ (x + 4)2 + (y + 9)2 = 52
⇔ x2 + 8x + 16 + y2 + 18y + 81 = 25
⇔ x2 + y2 + 8x + 18y + 16 + 81 – 25 = 0
⇔ x2 + y2 + 8x + 18y + 72 = 0
Jawab : A
⇔ (x – (-4))2 + (y – (-9))2 = 52
⇔ (x + 4)2 + (y + 9)2 = 52
⇔ x2 + 8x + 16 + y2 + 18y + 81 = 25
⇔ x2 + y2 + 8x + 18y + 16 + 81 – 25 = 0
⇔ x2 + y2 + 8x + 18y + 72 = 0
Jawab : A
Soal No.6
Sebuah lingkaran yang memiliki titik pusat (3, -5) dan berjari-jari 2 memiliki persamaan lingkaran ?
A. x2 + y2 - 6x + 10y + 29 = 0
B. x2 + y2 - 16x + 10y + 29 = 0
C. x2 + y2 - 6x + 16y + 29 = 0
D. x2 + y2 + 18x + 18y + 29 = 0
Pembahasan
⇔ (x - a)2 + (y - b)2 = r2
⇔ (x – 3)2 + (y – (-5))2 = 22
⇔ (x – 3)2 + (y + 5)2 = 22
⇔ x2 – 6x + 9 + y2 + 10y + 24 = 4
⇔ x2 + y2 – 6x + 10y + 9 + 24 – 4 = 0
⇔ x2 + y2 – 6x + 10y + 29 = 0
Jawab : A
⇔ (x – 3)2 + (y – (-5))2 = 22
⇔ (x – 3)2 + (y + 5)2 = 22
⇔ x2 – 6x + 9 + y2 + 10y + 24 = 4
⇔ x2 + y2 – 6x + 10y + 9 + 24 – 4 = 0
⇔ x2 + y2 – 6x + 10y + 29 = 0
Jawab : A
Soal No.7
Jari-jari dan pusat lingkaran yang memiliki persamaan x2 + y2 + 4x − 6y − 12 = 0 adalah...
A. Titik pusat (−2, 3) dan jari-jari 5
B. Titik pusat (2, −3) dan jari-jari 5
C. Titik pusat (−3, 2) dan jari-jari 6
D. Titik pusat (3, −2) dan jari-jari 6
Pembahasan
Dari persamaan lingkaran : x2 + y2 + 4x − 6y − 12 = 0, kita dapatkan
A = 4
B = −6
C = −12
Titik Pusat lingkaran (P) adalah :
⇔ P = (-
⇔ P = (-
⇔ P = (-2, 3)
Jari-jari lingkaran adalah :
Sehingga titik pusat (-2, 3) dan jari-jarinya adalah 5
Jawab : A
A = 4
B = −6
C = −12
Titik Pusat lingkaran (P) adalah :
⇔ P = (-
1
2
A, -
1
2
B) ⇔ P = (-
1
2
(4), -
1
2
(-6)) ⇔ P = (-2, 3)
Jari-jari lingkaran adalah :
⇔ r = √(-
1
2
A)2 + (-
1
2
B)2 - C
⇔ r = √(-
1
2
(4))2 + (-
1
2
(-6))2 - (-12)
⇔ r = √4 + 9 + 12 = 3
⇔ r = √25 = 5
Sehingga titik pusat (-2, 3) dan jari-jarinya adalah 5
Jawab : A
Soal No.8
Sebuah lingkaran yang yang berpusat di (2,3) dan jari-jari 5, maka persamaan lingkaran tersebut adalah ....
A. (x + 12)2 + (y – 13)2 = 52
B. (x + 2)2 + (y + 3)2 = 52
C. (x – 2)2 + (y – 3)2 = 52
D. (x + 2)2 + (y – 3)2 = 52
Pembahasan
⇔ (x - a)2 + (y - b)2 = r2
⇔ (x – 2)2 + (y – 3)2 = 52
Jawab : C
⇔ (x – 2)2 + (y – 3)2 = 52
Jawab : C
Soal No.9
Titik pusat dan jari-jari lingkaran pada persamaan lingkaran (x–3)2 + (y–7)2 = 64 adalah... A. Titik pusat (6,4) dan jari-jari 6
B. Titik pusat (3,7) dan jari-jari 8
C. Titik pusat (3,4) dan jari-jari 8
D. Titik pusat (4,4) dan jari-jari 7
Pembahasan
Persamaan lingkaran dengan pusat (a,b) dan jari-jari r adalah (x - a)2 + (y - b)2 = r2
Dari persamaan lingkaran : (x–3)2 + (y–7)2 = 64
maka a = 3 , b = 7, dan r2 = 64
Jadi lingkaran (x–3)2 + (y–7)2 = 64 memiliki titik pusat di (3,7) dan jari-jari 8.
Jawab : B
Dari persamaan lingkaran : (x–3)2 + (y–7)2 = 64
maka a = 3 , b = 7, dan r2 = 64
Jadi lingkaran (x–3)2 + (y–7)2 = 64 memiliki titik pusat di (3,7) dan jari-jari 8.
Jawab : B
Soal No.10
Jika terdapat suatu persamaan lingkaran :
x2 + y2 −4x + 2y − 4 = 0.
Dan titik A memiliki koordinat (2, 1). Tentukanlah apakah posisi titik tersebut berada di dalam lingkaran, di luar lingkaran ataupun pada lingkaran ?
Pembahasan
Titik A (2, 1)
, maka x = 2 dan y = 1
Masukkan nilai x =2 dan y = 1 pada persamaan lingkaran
x2 + y2 −4x + 2y − 4 = 0
⇔(2)2 + (1)2 −4(2) + 2(1) − 4
⇔ 4 + 1 − 8 + 2 − 4
⇔ −5
Jika :
, maka x = 2 dan y = 1
Masukkan nilai x =2 dan y = 1 pada persamaan lingkaran
x2 + y2 −4x + 2y − 4 = 0
⇔(2)2 + (1)2 −4(2) + 2(1) − 4
⇔ 4 + 1 − 8 + 2 − 4
⇔ −5
Jika :
- Hasil < 0 , titik di dalam lingkaran.
- Hasil > 0 , titik akan berada di luar lingkaran.
- Hasil = 0, titik berada pada lingkaran.